已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合. (Ⅰ)求f(x)的解析式; (Ⅱ)设函数g(x)=[f(x)-m]•ex,若函数g(x)在x∈[-
题目
已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=[f(x)-m]•ex,若函数g(x)在x∈[-3,2]上单调,求实数m的取值范围.
答案
(Ⅰ)∵二次函数f(x)=ax
2+bx,f(x-1)为偶函数,
∴f(x)的对称轴为x=-1,∴
−=−1∵集合A={x|f(x)=x}为单元素集合
∴f(x)=x有两个相等的实数根
∴ax
2+(b-1)x=0,∴b=1
∴
∴
∴f(x)的解析式为f(x)=
x
2+x;
(Ⅱ)g(x)=(
x
2+x-m)•e
x,
若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立
即(
x
2+2x+1-m)•e
x≥0对x∈[-3,2]上恒成立
∴m≤(
x
2+2x+1)
min(x∈[-3,2])
∴m≤-1
若函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立
即(
x
2+2x+1-m)•e
x≤0对x∈[-3,2]上恒成立
∴m≥(
x
2+2x+1)
max(x∈[-3,2])
∴m≥7
∴实数m的取值范围为(-∞,-1]∪[7,+∞).
(Ⅰ)根据二次函数f(x)=ax
2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合,可得f(x)的对称轴为x=-1,f(x)=x有两个相等的实数根,由此可求f(x)的解析式;
(Ⅱ)g(x)=(
x
2+x-m)•e
x,分类讨论:若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立;函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立,再分离参数即可求得实数m的取值范围.
利用导数研究函数的单调性;函数解析式的求解及常用方法;函数奇偶性的性质.
本题主要考查二次函数、函数的单调性,考查利用函数单调性求参数取值范围的综合运用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 已知在三角形ABC中,BA=BC,角B=120度,AB的垂直平分线DE交AC于D,求证:AD=二分之一DC
- 《“精彩极了”和“糟糕透了”》“歧途”中“歧”是什么意思
- 这些年来,我国的电器产品数量和质量都有显著的的提高.(修改病句)
- 设直角三角形的三边长时a、b、c,若c-b=b-c大于0,求c-a除以c+a的值
- How often do you brush your teeth?
- 丁丁从5楼到8楼共24秒,用同样的速度,从8楼到12楼需多长时间
- lie on one‘s stomach
- 一个正方体的棱长缩小到原来的4分之1,他的表面积就缩小到原来的(),体积就缩小到原来的()
- 英语翻译
- 一根电线长六米,第一次剪去三分之一,第二次剪去三分之一米,还剩多少米?
热门考点