设F1,F2是双曲线x2−y224=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于(  ) A.42 B.83 C.24 D.48

设F1,F2是双曲线x2−y224=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于(  ) A.42 B.83 C.24 D.48

题目
设F1,F2是双曲线x
答案
F1(-5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则|PF1| =
4
3
x

由双曲线的性质知
4
3
x−x=2
,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=
1
2
×8×6=24

故选C.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.