n阶矩阵AB满足A+2B=AB证明AB=BA
题目
n阶矩阵AB满足A+2B=AB证明AB=BA
答案
证明: 由 A+2B=AB 得
(A-2E)(B-E) = 2E
所以 B-E 可逆, 且 (B-E)^-1 = (1/2)(A-2E).
所以 (B-E)(A-2E) = 2E
整理有 BA = A+2B
再由已知得 AB=BA.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点