若函数f(x)的导函数f′(x)=x2-4x,则函数f(x-1)的单调递减区间是_.

若函数f(x)的导函数f′(x)=x2-4x,则函数f(x-1)的单调递减区间是_.

题目
若函数f(x)的导函数f′(x)=x2-4x,则函数f(x-1)的单调递减区间是______.
答案
由f′(x)=x2-4x,
得到f′(x-1)=(x-1)2-4(x-1)=x2-6x+5,
令f′(x-1)=x2-6x+5<0,即(x-1)(x-5)<0,
解得:1<x<5,
所以函数f(x-1)的单调递减区间是(1,5).
故答案为:(1,5)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.