在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2

在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2

题目
在角ABC中,角A、B、C对应边分别为a,b,c,试证明下列恒等式;cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2
答案
cotA/2+cotB/2+cotC/2=cotA/2*cotB/2*cotC/2
等价于:tanA/2tanB/2+tabB/2tanC/2+tanC/2tanA/2=1
证明:
tanC/2=tan(180-(A+B))/2
=cot(A/2+B/2)
=1/tan(A/2+B/2)
=(1-tanA/2tanB/2)/(tanA/2+tanB/2)
故:tanC/2*(tanA/2+tanB/2)=1-tanA/2tanB/2
tanA/2tanB/2+tabB/2tanC/2+tanC/2tanA/2=1
故原式成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.