正方形ABCD和正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,求证PQ平行于平面BCE.

正方形ABCD和正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,求证PQ平行于平面BCE.

题目
正方形ABCD和正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,求证PQ平行于平面BCE.
答案
分别过P,Q做AB的平行线,交BE,BC与M和N,连接MN
因为两个正方形有一条公共边,所以两个正方形的变长相等,因此这两个正方形是全等的,所以AE=BD
因为AP=DQ,所以EP=BQ
所以EP/AE=BQ/BD
因为EP/AE=PM/AB,且BQ/BD=NQ/CD
所以PM/AB=NQ/CD
因为AB=CD,所以PM=NQ,因为PM和NQ同时与AB平行,所以PM‖NQ
所以四边形PQNM为平行四边形
所以PQ‖MN
由于MN是平面BCE中的一条线,所以PQ平行于平面BCE
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.