已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方
题目
已知数列{an}的前n项和为sn,a1=a,an+1=2sn+4的n平方
答案
已知数列an的前n项和为Sn,已知a1=a,a(n+1)=2Sn+4^n(N为正整数)
(1)设bn=Sn-4^n,求证:数列bn是等比数列
(2)若a=1,求数列an的前n项和Sn
(3)若a(n+1)≥an,n为正整数,求实数a的取值范围
【解】
(1)
a1=a
a2=2S1+4^1=2a+4
a(n+1)=2S(n)+4^n
a(n)=2S(n-1)+4^(n-1),n>=2
a(n+1)-a(n)=2a(n)+3*4^(n-1)
a(n+1)=3a(n)+3*4^(n-1)
a(n+1)-3*4^n=3[a(n)-3*4^(n-1)]
{a(n)-3*4^(n-1)}是等比数列,首项a2-12=2a-8,公比3
a(n)-3*4^(n-1)=(2a-8)*3^(n-2)
a(n)=3*4^(n-1)+(2a-8)*3^(n-2)
n>=2
S(n)=a+3[4+4^2+4^3+...+4^(n-1)]+(2a-8)(1+3+3^2+3^3+...+3^(n-2)]
=a+[4^n-4]+(a-4)[3^(n-1)-1]
=4^n+(a-4)*3^(n-1)
当n=1,S(1)=a也适合
∴S(n)=4^n+(a-4)*3^(n-1)
b(n)=S(n)-4^n=(a-4)*3^(n-1)显然是等比数列
(2)
由(1)知
S(n)=4^n+(a-4)*3^(n-1)=4^n-3^n
(3)
a1=a
a2=2a+4
a2>=a1,2a+4>=a,a>=-4
n>=2
a(n)=3*4^(n-1)+(2a-8)*3^(n-2)
a(n+1)=3*4^n+(2a-8)*3^(n-1)
a(n+1)>=a(n)
3*4^n+(2a-8)*3^(n-1)>=3*4^(n-1)+(2a-8)*3^(n-2)
9*4^(n-1)+4(a-4)*3^(n-2)>=0
a-4>=-9*4^(n-2)/3^(n-2)=-9*(4/3)^(n-2)
-9*(4/3)^(n-2)是减函数,故只需满足
a-4>=-9(4/3)^(2-2)=-9,a>=-5
∴a>=-4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 我是这次考的BEC,大作文没写题号,但是写了Report on ...真是担忧啊,
- 0.000 0025用科学计数法 回答都给好评:-)
- 与向量a(15,8)垂直的单位向量的坐标为()
- 1、已知a的3/5等于b的5/3,等于 c (abc均不为0)请按从小到大排列 2、计算 1/1×2+1/2×3……+1/198×199+
- 下列文言文句式分别是哪种?
- 比36吨多3分之1是()吨;30米比()米少6分之1
- 分解质因数,a=2乘3乘7,b=3乘5乘7
- 数学题不会,亲帮助一下啦,序列2001,2002,2003,..., 规律是这样的2001+2002-2003=2000,第四个就是2000
- history our teacher me happy very makes 连词成句
- 沙质土和粘质土和壤土有什么区别
热门考点