已知a∈R,函数f(x)=a/x+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值; (2)是否存在实数x0∈(0,e],使曲线

已知a∈R,函数f(x)=a/x+lnx−1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). (1)求函数f(x)在区间(0,e]上的最小值; (2)是否存在实数x0∈(0,e],使曲线

题目
已知a∈R,函数f(x)=
a
x
+lnx−1
,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
答案
(1)∵f(x)=ax+lnx−1,∴f′(x)=−ax2+1x=x−ax2令f'(x)=0,得x=a.①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x...
(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值;
(2)将曲线y=g(x)在点x=x0处的切线与y轴垂直转化成方程g'(x0)=0有实数解,只需研究导函数的最小值即可.

利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.

本题主要考查了利用导数求闭区间上函数的最值,以及利用导数研究曲线上某点切线方程,属于中档题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.