在三角形ABC中,三个内角A、B、C的对边分别为a,b,c,且满足4[sin(A+C)/2]^2-cos2B=7/2

在三角形ABC中,三个内角A、B、C的对边分别为a,b,c,且满足4[sin(A+C)/2]^2-cos2B=7/2

题目
在三角形ABC中,三个内角A、B、C的对边分别为a,b,c,且满足4[sin(A+C)/2]^2-cos2B=7/2
(1)求B;
(2)如果b=根号3,a+c=3,且a>c,求a,c的值
答案
4[sin(A+C)/2]^2=4*[1-cos(A+C)]/2
=2-2cos(A+C)
=2+2cosB
所以2+2cosB-[2(cosB)^2-1]=7/2
4(cosB)^2-4cosB+1=0
cosB=1/2
B=60度
a+c=3
(a+c)=a^2+c^2+2ac=9
a^2+c^2=9-2ac
cosB=(a^2+c^2-b^2)/2ac=(9-2ac-3)/2ac=cos60=1/2
(3-ac)/ac=1/2
6-2ac=ac
ac=2
a+c=3
a和c是方程x^2-3x+2=0的根
(x-1)(x-2)=0
a>c
所以a=2,c=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.