如图:AE是正方形ABCD中∠BAC的平分线,AE分别交BD、BC于F、E,AC、BD相交于O,求证:OF=1/2CE.
题目
如图:AE是正方形ABCD中∠BAC的平分线,AE分别交BD、BC于F、E,AC、BD相交于O,求证:OF=
答案
证明:取AE中点P,连接OP,
∵点O是AC中点,
∴OP是△ACE的中位线,
∴OP=
CE,OP∥AD,
∴∠OPF=∠EAD=∠EAC+∠CAD=∠EAC+45°,
又∵∠OFP=∠ABD+∠BAE=∠BAE+45°,∠EAC=∠BAE,
∴∠OPF=∠OFP.
∴OP=OF.
∴OF=
CE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点