已知an=n/3n,则数列{an}的前n项和Sn等于多少?
题目
已知an=n/3n,则数列{an}的前n项和Sn等于多少?
答案
Sn=1/3+2/(3^2)+3/(3^3)+.+n/(3^n)
(1/3)Sn=1/(3^2)+2/(3^3)+.+(n-1)/(3^n)+n/[3^(n+1)]
两式相减得(2/3)Sn=1/3+1/(3^2)+.+1/(3^n)-n/[3^(n+1)]
=(1/3)[1-(1/3)^n]/[1-(1/3)]-n/[3^(n+1)]
= 1/2-1/2*[(1/3)^n]-n/[3^(n+1)]
Sn=3/4-3/4*[(1/3)^n]-3/2*n/[3^(n+1)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点