已知cos(x+45°)=0.6 求(1)sin2x (2)若17π/12<x<7π/4 则(sinx +sin2x·tanx)/(1-tanx)
题目
已知cos(x+45°)=0.6 求(1)sin2x (2)若17π/12<x<7π/4 则(sinx +sin2x·tanx)/(1-tanx)
已知cos(x+45°)=0.6 求(1)sin2x (2)若17π/12<x<7π/4 则(sinx +sin2x·tanx)/(1-tanx)
答案
1、sin2x =2sin x cos x
而cos(x+45°)=cos x *cos 45°-sinx sin45°=√2/2 *(cos x-sin x)=0.6
所以:cosx-sinx=3√2/5
所以:(cosx-sinx)²=1-2sinxcosx=18/25
所以2sinxcosx=1-18/25=7/25
所以sin 2x=7/25=0.28
(2)若17π/12<x<7π/4 则(sinx +sin2x·tanx)/(1-tanx)
也是一样.化简.
(sinx +sin2x·tanx)/(1-tanx)
=(sinx +2sinxcosx·sinx/cosx)/(1-sinx/cosx)
=(sinx+2sin²x)/[(cosx-sinx)/cosx]
=sinxcosx(1+sinx)/(cosx-sinx)
由上面的:cos(x+45°)=cos x *cos 45°-sinx sin45°=√2/2 *(cos x-sin x)=0.6
算得:cosx-sinx=
cosx-sinx=
sinxcosx=0.14
跟着再代进去……
没时间了.自己算一下,明天如果有空再帮你看一下.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点