函数展开成幂级数

函数展开成幂级数

题目
函数展开成幂级数
书上说,函数在x.点展开成幂级数,这句话中,x.点有何重要作用呢,它本身隐含有什么意义?
希望能详细些.
在一个网站上看到一句话:“通常n愈大,或x愈接近x。Rn(x)就愈小。微积分要处理的是n [x-x0] [Rn(x)]三者之间的大小变化与彼此之间的关系。”请问他们之间有什么样的关系。
答案
还是我来解释吧.我们常用泰勒公式把函数f(x)展开成幂级数的形式,通常会说在x=x0处展开,这首先要满足函数在领域(x0,δ)有定义,有直到n阶的导数f(x0),这样我们就可以在x=x0处用Taylor公式展开了.当然如果在x=0处满足上面的条件,那么可以在x=0处展开,这就是所谓的马克劳林公式,是泰勒公式的特殊情况.我们常用的初等函数幂级数表就是在x=0处展开的.好了,我的微积分也快忘完了.打住了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.