如图所示,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M、N,求证:(1)BM=CN;(2)BM⊥CN.
题目
如图所示,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M、N,求证:(1)BM=CN;(2)BM⊥CN.
答案
证明:(1)∵MN∥AB,
∴∠OMN=∠OAB,
∠ONM=∠OBA
∵OA=OB,
∴∠OAB=∠OBA
∴∠OMN=∠ONM,
∴OM=ON
∴AM=OA-OM=OB-ON=BN,
在△ABM和△BCN中,
,
∴△ABM≌△BCN(SAS),
∴BM=CN.
(2)由△ABM≌△BCN得,∠ABM=∠BCN,
又∵∠ABM+∠CBM=90°,
∴∠BCN+∠CBM=90°,
∴CN⊥BM.
(1)根据平行线的性质求出∠OMN=∠ONM=∠OAB=∠OBA=45°,AM=BN,进而求证△ABM≌△BCN,得到BM=CN;
(2)因为∠ABM+∠CBM=90°,所以∠BCN+∠CBM=90°,BM⊥CN.
正方形的性质;全等三角形的判定与性质.
考查了正方形的性质和全等三角形的判定与性质,根据正方形的性质求证判定三角形全等是解决本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点