已知A,B,C为三角形ABC的三个内角,且其对边分别为a,b,c,若向量m=(2cosA/2,tanA),向量n=(-cosA/2,cosA),

已知A,B,C为三角形ABC的三个内角,且其对边分别为a,b,c,若向量m=(2cosA/2,tanA),向量n=(-cosA/2,cosA),

题目
已知A,B,C为三角形ABC的三个内角,且其对边分别为a,b,c,若向量m=(2cosA/2,tanA),向量n=(-cosA/2,cosA),
且向量mn=1/2.(1)求角A;(2)若b+c=4,三角形ABC的面积为√3,求a.
改正:向量n=(-cosA/2,cotA)
答案
(1)
∵向量m*向量n=-2[cos(A/2)]^2+tanA*cotA=-(cosA+1)+1=-cosA=1/2
∴cosA=-1/2
∵A是△ABC的内角
∴A∈(0,π)
∴A=2π/3.
(2)
∵S△ABC=(1/2)bcsinA=(1/2)bcsin(2π/3)=(1/2)bc*(√3)/2=(√3)bc/4=√3
∴bc=4
∵b+c=4
∴(b+c)^2=b^2+2bc+c^2=b^2+c^2+8=16
∴b^2+c^2=8.
由余弦定理:(b^2+c^2-a^2)/(2bc)=(8-a^2)/(2*4)=cosA=cos(2π/3)=-1/2
解得:a=2√3.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.