如果三角形ABC内接于半径为R的圆,且2R(sin*2A-sin*2C)=(根号2a-b)sinB,求三角形ABC面积的最大值.

如果三角形ABC内接于半径为R的圆,且2R(sin*2A-sin*2C)=(根号2a-b)sinB,求三角形ABC面积的最大值.

题目
如果三角形ABC内接于半径为R的圆,且2R(sin*2A-sin*2C)=(根号2a-b)sinB,求三角形ABC面积的最大值.
答案
根据正弦定理 由2R[(sinA)-(sinC)]=(√2*a- b)*sinB 得到a-c=√2ab-b 根据余弦定理 cosC=(a+b-c)/2ab=√2/2 故角C=45度 所以S=(1/2)absinC=2RsinAsinBsinC =√2RsinAsinB 根据两角正弦积化和的公式 S=√2RsinAsinB=(√2R/2)[cos(A-B)-cos(A+B)] =(√2R/2)[cos(A-B)+cosC] =(√2R/2)[cos(A-B)+√2/2] ≤(√2R/2)[1+√2/2]=[(√2+1)R]/2 所以当A=B的时候 三角形ABC的面积的最大值是[(√2+1)R]/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.