如图,在四边形ABCD中,∠ABC=∠ADC=90°

如图,在四边形ABCD中,∠ABC=∠ADC=90°

题目
如图,在四边形ABCD中,∠ABC=∠ADC=90°
E和F分别是对角线AC和BD的中点,求证:EF⊥BD
提示:连接DE和BE
答案
连接DE和BE
因为∠ABC=∠ADC=90°
所以△ABC,△ADC都是Rt△
又因为E是AC中点
所以BE,DE分别是Rt△ABC和Rt△ADC斜边上的中线
所以BE=AC/2=DE
所以△BED是等腰三角形
而F又是BD中点
由三线合一知
EF是高线
所以EF⊥BD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.