向量a=(1,1),向量b=(1,-1),向量c=(√cosα,√sinα),α∈R,实数m,n满足ma+nb=c,则(m-3)^2+n^2最大为?

向量a=(1,1),向量b=(1,-1),向量c=(√cosα,√sinα),α∈R,实数m,n满足ma+nb=c,则(m-3)^2+n^2最大为?

题目
向量a=(1,1),向量b=(1,-1),向量c=(√cosα,√sinα),α∈R,实数m,n满足ma+nb=c,则(m-3)^2+n^2最大为?
a 、b、c都是向量,m、n都是实数.
汗水。是根号2倍 cos和 sin 2没打出来?不过还没学解析几何。
答案
因为ma+nb=c,所以m+n=√cosα,m-n=√sinα.两个式子分别平方后相加,得m²+n²=1/2,可以看成(m、n)是以原点为圆心,√1/2为半径的园上的点.求的是(m-3)^2+n^2的最大值,这种形式可以看成是距离的平方形式,即...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.