已知:如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:AD=BC.
题目
已知:如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:AD=BC.
答案
证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,
∴OA=OB,OC=OD.
在△AOD与△BOC中,
∵
,
∴△AOD≌△BOC(SAS).
∴AD=BC.
已知OA,OB为⊙O的半径.且有公共角∠O,则可以利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.
全等三角形的判定与性质.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点