求与椭圆x2144+y2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.

求与椭圆x2144+y2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.

题目
求与椭圆
x
答案
椭圆
x2
144
+
y2
169
=1
的焦点是:(0,-5)(0,5),焦点在y轴上;
于是可设双曲线的方程是
y2
a2
x2
b2
=1
,(a>0,b>0).
又双曲线过点(0,2)
∴c=5,a=2,
∴b2=c2-a2=25-4=21.
∴双曲线的标准方程为:
y2
4
x2
21
=1

所以:双曲线的实轴长为4,焦距为10,离心率e=
c
a
5
2
.渐近线方程是y=±
2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.