A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
题目
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
为什么r(A)=2,可得-2为二重根?
答案
这是因为 "可对角化的矩阵的秩等于其非零特征值的个数"
A是实对称矩阵,A(A+2E)=0,故A的特征值只能是0,-2
由 r(A)=2 知 A 的特征值为 0,-2,-2.
所以 A^2+3E 的特征值为 (λ^2+3):3,7,7
所以 |A^2+3E| = 3*7*7 = 147.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点