在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则三角形最小的内角是
题目
在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则三角形最小的内角是
答案
由正弦定理
sinA:sinB:sinC=a:b:c=2:√6:(√3+1),
所以a最小,所以A最小
cosA=(b²+c²-a²)/2bc
=(6+4+2√3-4)/2√6(√3+1)
=√3(√3+1)/√6(√3+1)
=√2/2
A=45度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点