已知函数f(x)=kx^3-3(k+1)x^2-k^2+1(k>0),若f(x)的单调递减区间是(0,4).

已知函数f(x)=kx^3-3(k+1)x^2-k^2+1(k>0),若f(x)的单调递减区间是(0,4).

题目
已知函数f(x)=kx^3-3(k+1)x^2-k^2+1(k>0),若f(x)的单调递减区间是(0,4).
(1)求k的值
(2)当x>k时,用导数方法求证:x^3>2-x
答案
(1)容易求出 f'(x)=3kx^2-6(k+1)x.因为 f(x) 的单调减区间为 (0,4),所以 0 和 4 均为 f(x) 的极值点,也就是 f'(x) 的零点.即 f'(0)=f'(4)=0.由 f'(4) = 48k-24(k+1) = 0 即可求得 k=1.
(2)要证 x>1 时,x^3>2-x.
记函数 g(x) = x^3+x-2.则 g'(x)=3x^2+1.显然 g'(x)>0 对任意x成立,特别地,对 x>1 也成立.因此函数 g(x) 在 x>1 时是增函数,从而 g(x)>g(1)=0,即 x>1 时有 x^3+x-2>0,即 x^2>2-x.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.