证明:锐角三角形ABC中,cos2A+cos2B+cos2C

证明:锐角三角形ABC中,cos2A+cos2B+cos2C

题目
证明:锐角三角形ABC中,cos2A+cos2B+cos2C<0
高一数学
答案
cos2A+cos2B+cos2Ccos2A+cos2B+cos2C
=(cos2A+cos2B)+(cos2B+cos2C)+(cos2A+cos2C) .用和差化积公式cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
原式=2[cos(A+B)cos(A-B)+cos(B+C)cos(B-C)+cos(A+C)cos(A-C)]
锐角三角形ABC 则 A+B>∏/2,C+B>∏/2,A+C>∏/2
-∏/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.