证明梯形的对角线的中点的连线段等于两底差的一半,附图!

证明梯形的对角线的中点的连线段等于两底差的一半,附图!

题目
证明梯形的对角线的中点的连线段等于两底差的一半,附图!
答案
已知:梯形ABCD中AD∥BC,BC>AD,E、F是BD、AC的中点,
求证:EF=1/2(BC-AD)
证明:连结AE延长交BC于点G,
∵AD∥BC,∴∠ADE=∠GBE,
又∵DE=BE、∠AED=∠GEB,
∴△ADE≌△GBE,∴AD=GB、AE=GE,
∴GC=BC-BG=BC-AD,
∵E、F是AG、AF中点,
∴EF=1/2GC=1/2(BC-AD),证毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.