计算∫x*ln(1+x^2)dx=
题目
计算∫x*ln(1+x^2)dx=
答案
∫x*ln(1+x^2)dx
=1/2积分:ln(1+x^2)d(1+x^2)
令1+x^2=t
=1/2积分:lntdt
=1/2[tlnt-积分:td(lnt)]
=1/2[tlnt-积分:dt]
=1/2[tlnt-t]+C
=1/2(1+x^2)ln(1+x^2)-(1+x^2)/2+C
(C 为常数)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点