已知等差数列{an}的首项为a1=1,公差d不为0,等比数列{bn}满足b2=a2,b3=a5,b4=a14

已知等差数列{an}的首项为a1=1,公差d不为0,等比数列{bn}满足b2=a2,b3=a5,b4=a14

题目
已知等差数列{an}的首项为a1=1,公差d不为0,等比数列{bn}满足b2=a2,b3=a5,b4=a14
(1)求数列{an}、{bn}的通项公式
(2)数列{cn}对任意n属于N*都有c1/b1+c2/b2+c3/b3+……+cn/bn=a(n+1),求数列{cn}通项公式
答案
(1)
因为等差数列{an}的首项a1=1
所以a2=a1+d=1+d,a5=a1+4d=1+4d,a14=a1+13d=1+13d
因为{bn}为等比数列
所以(b3)^2=b2*b4
又a2=b2,a5=b3,a14=b4
所以(a5)^2=a2*a14
即(1+4d)^2=(1+d)*(1+13d)
所以1+8d+16d^2=1+14d+13d^2
即d^2-2d=0
所以d=2或d=0
又因为d>0
所以d=2
所以an=a1+(n-1)d=1+2(n-1)=2n-1
所以b2=a2=3,b3=a5=9
故q=b3/b2=9/3=3
所以b1=b2/q=3/3=1
所以bn=b1*q^(n-1)=1*3^(n-1)=3^(n-1)
(2)
c1/b1+c2/b2+c3/b3+……+Cn/bn=a(n+1)
c1/b1+c2/b2+c3/b3+……+Cn/bn=2n
设cn/bn=gn
Tn=2n
gn=Tn-Tn-1=2
所以Cn/Bn=2
Cn=2*3^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.