设随机变量X和Y的联合分布是以点(0,1),(1,0),(1,1)为顶点的三角形上均匀分布,试求随机变量z=x+y的概率密度函数
题目
设随机变量X和Y的联合分布是以点(0,1),(1,0),(1,1)为顶点的三角形上均匀分布,试求随机变量z=x+y的概率密度函数
答案
故得Z=X Y在图示的区域G里均匀分布,用(x.y)表示区域里G的点,则 f(x,y):①:1/4,(x,y)∈G ②:0,其它,所以Z的分布函数为F(z):①:
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点