不等式的导数证明

不等式的导数证明

题目
不等式的导数证明
i、m、n为正整数,且1
均值不等式证明方法能不能详细一点。
答案
方法一:利用均值不等式
对于m+1个数,其中m个(2+m),1个1,它们的算术平均数大于几何平均数,即
[(2+m)+(2+m)+...+(2+m)+1]/(m+1)>[(2+m)^m]^[1/(1+m)]
即1+m>(2+m)^[m/(1+m)]
即(1+m)^(1/m)>[1+(m+1)]^[1/(1+m)]
由此说明数列{(1+m)^(1/m)}是单调递减的.
方法二:导数方法
令f(x)=(1+x)^(1/x),x>0
求导数
f'(x)=(1+x)^(1/x)*[x/(1+x)-ln(1+x)]/x^2
为了考察f'(x)的正负
令g(x)=x/(1+x)-ln(1+x),x>=0
g'(x)=-x/(1+x)^20
因此g(x)0,亦即f'(x)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.