若定义在r上的函数fx对任意x1.x2属于r都有f(x1+x2)=fx1+fx2+2成立,且当x>0时,fx>-2

若定义在r上的函数fx对任意x1.x2属于r都有f(x1+x2)=fx1+fx2+2成立,且当x>0时,fx>-2

题目
若定义在r上的函数fx对任意x1.x2属于r都有f(x1+x2)=fx1+fx2+2成立,且当x>0时,fx>-2
1.求证gx=fx+2为奇函数
2.求证fx在r上是增函数
3.若f(1)=—1解不等式f(log2m)
答案
令x1=x2=0,所以f(0+0)=f(0)+f(0)+2,所以f(0)=-2
令x1=x,x2=-x,所以f(x-x)=f(x)+f(-x)+2,所以f(x)+f(-x)=f(0)-2=-4
1.g(-x)=f(-x)+2,g(x)=f(x)+2
因为f(x)+f(-x)=-4,所以f(-x)+2=-[f(x)+2]即g(-x)=-g(x),得证.
2.假设x1>0,x2-x2
f(x1+x2)=f(x1)+f(x2)+2
因为x1+x2>0,所以f(x1+x2)>-2
所以f(x1)+f(x2)+2>-2,得到f(x1)+2>-[f(x2)+2]=f(-x2)+2 于是f(x1)>f(-x2) 同时g(x1)>g(-x2)
于是证明了,当x>0时,g(x)是增函数,因为g(x)又是奇函数,所以g(x)是R上的增函数,于是f(x)也是R上的增函数.
3.f(2)=f(1+1)=f(1)+f(1)+2=0,f(4)=2f(2)+2=2
于是f(log2m)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.