求a1=1,an=2a(n-1)+2*(-1)^n (n>=2)的通项公式
题目
求a1=1,an=2a(n-1)+2*(-1)^n (n>=2)的通项公式
答案
an=2a(n-1)+2×(-1)^n
an-(2/3)×(-1)^n=2a(n-1)+(4/3)×(-1)^n
an-(2/3)×(-1)^n=2[a(n-1)-(2/3)×(-1)^(n-1)]
即:[an-(2/3)×(-1)^n]/[a(n-1)-(2/3)×(-1)^(n-1)]=2=常数,则:
数列{an-(2/3)×(-1)^n}是以a1-(2/3)×(-1)=a1+(2/3)=5/3为首项、以q=2为公比的等比数列,则:
an-(2/3)×(-1)^n=(5/3)×2^(n-1)
得:an=(5/3)×2^(n-1)+(2/3)×(-1)^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点