已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=_.

已知F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=_.

题目
已知F1、F2为椭圆
x2
25
+
y2
9
=1的两个焦点,过F1的直线交椭圆于A、B两点.若|F2A|+|F2B|=12,则|AB|=______.
答案
由椭圆的定义得
|AF1|+|AF2|=10
|BF1|+|BF2|=10

两式相加得|AB|+|AF2|+|BF2|=20,
即|AB|+12=20,
∴|AB|=8.
故答案:8
由椭圆的定义得
|AF1|+|AF2|=10
|BF1|+|BF2|=10
,所以|AB|+|AF2|+|BF2|=20,由此可求出|AB|的长.

椭圆的简单性质;椭圆的定义.

本题考查椭圆的基本性质和应用,解题时要注意公式的合理运用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.