证明:函数y=1/x · sin1/x在区间(0,1]上无界,但这函数不是x→0+是的无穷大

证明:函数y=1/x · sin1/x在区间(0,1]上无界,但这函数不是x→0+是的无穷大

题目
证明:函数y=1/x · sin1/x在区间(0,1]上无界,但这函数不是x→0+是的无穷大
以下是证明过程.
证明 对 任意 整数M>0,存在 x.=1/[2M+1] · 2/pai ∈(0,1],使得 |f(x.)|=[2M﹢1] · pai/2>M,
∴ 函数y=1/x · sin1/x在区间(0,1]上无界.
后面证明略……
我的问题是1/[2M+1] 和 2/pai 是如何来的,为什么要用他们.跟y=sinx的值域【-1,1】有什么关系?以后遇到 函数极限里面带有三角函数的题 该如何处理.
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.