△ABC和△DCE是两个相似的等腰三角形,底边BC、CE在同一条直线上,

△ABC和△DCE是两个相似的等腰三角形,底边BC、CE在同一条直线上,

题目
△ABC和△DCE是两个相似的等腰三角形,底边BC、CE在同一条直线上,
且∠BAC=1/2∠ABC,DC=BC,连接BD、AD,BD与AC相交于F.
(1)证明:AC=BD
(2)若AB=2,求DE.
答案
设AC与BD相交于点O
BC=CD,则∠CBD=∠CDB
而:△ABC∽△DCE,所以:AB//CD
则:∠ABD=∠CDB=∠CBD
所以:∠ABD=∠ABC/2=∠BAC
所以:OA=OB
AB//CD,可知:△ABO∽△DCO
所以:OC/OD=OA/OB=1
可知:OC=OD
所以:AC=OA+OC=OB+OD=BD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.