已知三角形ABC为等边三角形,D为BC边上一点,以AD为边作角ADE等于60度,DE与三角形ABC的外角平分线CE交于点E,连接AE,求证三角形ADE为等边三角形
题目
已知三角形ABC为等边三角形,D为BC边上一点,以AD为边作角ADE等于60度,DE与三角形ABC的外角平分线CE交于点E,连接AE,求证三角形ADE为等边三角形
答案
设AC交DE于F,作辅助线AB边取BH=BD
(主要思想是证三角形AHD全等于三角形DCE,用角角边)
因为AB=BC,BH=BD,所以AH=DC(一对边)
因为BH=BD,角B60度,所以三角形BHD等边,所以角BHD为60度则角AHD为120度
因为角C外角120度,CE平分它,所以角C+角ACE=角DCE=120度,即角AHD=角DCE(一组角)
因为角ADE=角ACE=60度,角AFD=角ECD,所以角DAC=角CED,因为HD||CA,所以角DAF=角ADH,所以角CED=角ADH(一组角)
所以三角形AHD全等于三角形DCE,所以AD=DE,以为角ADE=60度,所以三角形ADE为等边三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点