矩形ABCD的两边AB=3,AD=4,PA⊥平面ABCD,且PA=4根号3/5,则A-BD-P的度数为
题目
矩形ABCD的两边AB=3,AD=4,PA⊥平面ABCD,且PA=4根号3/5,则A-BD-P的度数为
形ABCD的两边AB=3,AD=4,PA⊥平面ABCD,且PA=4根号3/5,则A-BD-P的度数为形
答案
连接BD,作AE⊥BD,再连接EP,则角AEP=A-BD-P的度数
设AE=a
得:3*4=5*a
则 a=12/5
因为PA⊥平面ABCD,所有三角形PAE是直角三角形
tan角AEP=PA/AE=4根号3/5除以12/5=根号3/3
得出:角AEP=30度
A-BD-P的度数为30度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点