已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列an的通项公式

已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列an的通项公式

题目
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列an的通项公式
答案
b(n+1)/bn=2
∴bn=b1×2^(n-1)
b1=a2-a1=3-1=2
∴bn=2^n
∴a(n+1)-an=2^n
∴a2-a1=2
a3-a2=2^2
a4-a3=2^3
……
an-a(n-1)=2^(n-1)
相加得
an-a1=2(1-2^(n-1))/(1-2)=2^n-2
∴an=2^n-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.