在三角形ABC中,若a2=b(b+c),求证:A=2B
题目
在三角形ABC中,若a2=b(b+c),求证:A=2B
答案
因为 a^2=b(b+c),s (sinA)^2=(sinB)^2+sinBsin(A+B)
所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)
所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)
此处用到了和差化积的公式:
sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]
所以 sin(A+B)sin(A-B)=sinBsin(A+B)
所以 sin(A-B)=sinB
所以 A=2B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点