已知函数f(x)=x3+ax2+bx+c,当x=-1时,f(x)的极大值为7;当x=3时,f(x)有极小值.求: (1)a,b,c的值; (2)函数f(x)的极小值.

已知函数f(x)=x3+ax2+bx+c,当x=-1时,f(x)的极大值为7;当x=3时,f(x)有极小值.求: (1)a,b,c的值; (2)函数f(x)的极小值.

题目
已知函数f(x)=x3+ax2+bx+c,当x=-1时,f(x)的极大值为7;当x=3时,f(x)有极小值.求:
(1)a,b,c的值;
(2)函数f(x)的极小值.
答案
(1)∴f(x)=x3+ax2+bx+c∵f'(x)=3x2+2ax+b而x=-1和x=3是极值点,所以f′(−1)=3−2a+b=0f′(3)=27+6a+b=0解之得:a=-3,b=-9又f(-1)=-1+a-b+c=-1-3+9+c=7,故得c=2(2)由(1)可知f(x)=x3-3x2-9x+2而x...
(1)因为当x=-1时,f(x)有极大值,当x=3时,f(x)有极小值,所以把x=-1和3代入导数,导数都等于0,就可得到关于a,b,c的两个等式,再根据极大值等于7,又得到一个关于a,b,c的等式,三个等式联立,即可求出a,b,c的值.
(2)因为函数再x=3处有极小值,所以把x=3代入原函数,求出的函数值即为函数的极小值.

函数在某点取得极值的条件;函数解析式的求解及常用方法;利用导数研究函数的极值.

本题主要考查导数在求函数的极值中的应用,做题时要细心.理解极值与导数的对应关系及极值的判断规则是解题的关键,本题是导数应用题,常见题型

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.