关于x的方程sin^2x+cosx+k=0有实数解,求实数K的取值范围

关于x的方程sin^2x+cosx+k=0有实数解,求实数K的取值范围

题目
关于x的方程sin^2x+cosx+k=0有实数解,求实数K的取值范围
答案
原式得:(1-cos^2x)+cosx+k=0 整理得:cos^2x-cosx-(1+k)=0
要想方程有实数解,△≥0,即:1+4(1+k)≥0 得 k≥-5/4,又因为-1<cosx<1,根据二次函数的图像,当cosx=-1时,k=1,所以-5/4≤k≤1.但愿你看的明白!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.