求函数y=3x—x的立方—2的单调区间,极值,在区间[0,4]的最大值和最小值

求函数y=3x—x的立方—2的单调区间,极值,在区间[0,4]的最大值和最小值

题目
求函数y=3x—x的立方—2的单调区间,极值,在区间[0,4]的最大值和最小值
答案
f(x)=3x-x³-2,则:f'(x)=3-3x²=3(1-x)(1+x)
则函数f(x)在(-∞,-1)上递减,在(-1,1)上递增,在(1,+∞)上递减,则f(x)的极小值是f(-1)=-4,f(x)的极大值是f(1)=0;
在区间[0,4]上:f(0)=-2,f(1)=0,f(4)=-54,在函数f(x)在区间[0,4]上的最大值是f(1)=0,最小值是f(4)=-54
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.