在 △ABC所在的平面上有一点 ,满足 PA+PB+PC=AB(PA,PB,PC,AB都是向量),

在 △ABC所在的平面上有一点 ,满足 PA+PB+PC=AB(PA,PB,PC,AB都是向量),

题目
在 △ABC所在的平面上有一点 ,满足 PA+PB+PC=AB(PA,PB,PC,AB都是向量),
则 △PBC与△ABC 的面积之比是2/3,为什么
答案
AB=AP+PB=PA+PB+PC
所以AP=PA+PC
所以2PA+PC=O
所以点P在AC边上
且AP=1/3AC
所以△PBC的高是△ABC 高的2/3 底相等
所以面积是△ABC 的2/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.