求函数y=9/4(1+4x^2)+x^2的最小值

求函数y=9/4(1+4x^2)+x^2的最小值

题目
求函数y=9/4(1+4x^2)+x^2的最小值
用基本不等式
答案
y = 9(1+4x²)/4 + x² = 9x² +9/4 最小值 9/4
y = 9/[4 (1+4x²)] + x² = (9/16) / (1/4+x²) + (x² +1/4) - 1/4
≥ 2√(9/16) - 1/4 用到 M / x + x ≥ 2√M (x>0)
= 5/4(最小值)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.