多元函数的极值问题

多元函数的极值问题

题目
多元函数的极值问题
在椭圆x^2+4y^2=4上求一点,使其到平面2x+3y-6=0的距离最短
答案
令x=2cosa
则4y²=4-4cos²a=4sin²a
y=sina
P(2cosa,sina)
距离=|4cosa+3sina-6|/√(2²+3²)
=|5sin(a+b)-6|/√13
其中tanb=4/3
-5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.