若f(x)在R上为单调增函数,求证f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0

若f(x)在R上为单调增函数,求证f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0

题目
若f(x)在R上为单调增函数,求证f(a)+f(b)≥f(-a)+f(-b)的充要条件是a+b≥0
答案
(1)a+b≥0 →f(a)+f(b)≥f(-a)+f(-b)
因为a+b≥0所以a≥-b,b≥-a
又因为f(x)在R上为单调增函数
所以f(a)≥f(-b) f(b)≥f(-a)
所以f(a)+f(b)≥f(-a)+f(-b)
(2)f(a)+f(b)≥f(-a)+f(-b)→a+b≥0
反证法,假设a+b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.