等差数列前n项和的性质的证明?
题目
等差数列前n项和的性质的证明?
(1)等差数列an依次每K项之和仍成等差数列,其公差为原公差的K平方倍.(2)若等差数列的项数为2n,则S2n=n(an+a(n+1))(其中an,a(n+1)为中间两项)且S偶-S奇=nd,S奇比S偶=an比a(n+1)(3),数列Sn比n是等差数列,公差为二分之d.(4),数列Sn,S(2n)-Sn,S(3n)-S(2n)也成等差数列.
麻烦各位了,如果不能全证出来,一条也可以!要是全都证出来最好不过了!
答案
S2n-Sn=a(n+1)+a(n+2)+.+a(2n)=++.1式
1式-Sn=n2d
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点