过原点的直线与圆x2+y2-6x+5=0相交于A、B两点,求弦AB的中点M的轨迹方程.
题目
过原点的直线与圆x2+y2-6x+5=0相交于A、B两点,求弦AB的中点M的轨迹方程.
答案
设圆x2+y2-6x+5=0的圆心为C,则C的坐标是(3,0),由题意,CM⊥AB,①当直线CM与AB的斜率都存在时,即x≠3,x≠0时,则有kCMkAB=-1,∴yx−3×yx=−1(x≠3,x≠0),化简得x2+y2-3x=0(x≠3,x≠0),②当x=3时,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点