若sinα+sinβ=2分之根号二,求cosα+cosβ 的取值范围.
题目
若sinα+sinβ=2分之根号二,求cosα+cosβ 的取值范围.
我想知道本质的东西,到时候我再细问!
为什么cos(α-β)绝对值小于一?这俩角无范围吗?我的意思是α-β应该有范围吧!
答案
令cosα+cosβ =k 两边平方 有cos^2(α)+cos^2(β)+2cosα*cosβ=k^2 (1)
同理 sinα+sinβ=2分之根号二 两边平方 有sin^2(α)+sin^2(β)+2sinα*sinβ=1/2 (2)
(1)+(2) 有 2+2cosα*cosβ+2sinα*sinβ=k^2+1/2 2+2cos(α-β)=k^2+1/2 (3)
2cos(α-β)=k^2+1/2-2=k^2-3/2 cos(α-β)=1/2*k^2-3/4 因为 |cos(α-β)|《1
所以 |1/2k^2-3/4|《1 -1《1/2k^2-3/4《1 -1/4《1/2k^2《7/4 因为1/2k^2>=0
所以 0《1/2k^2《7/4 0《k^2《7/2 -根号14/2《k《根号14/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点