求 t^2/(t^4-1)dt 的积分
题目
求 t^2/(t^4-1)dt 的积分
答案
∫[t^2/(t^4-1)]dt
=(1/2)∫[(t^2+1+t^2-1)/(t^4-1)]dt
=(1/2)∫[1/(t^2-1)]dt+(1/2)∫[1/(t^2+1)]dt
=(1/4)∫[(t+1-t+1)/(t^2-1)]dt+(1/2)arctant
=(1/4)∫[1/(t-1)]dt-(1/4)∫[1/(t+1)]dt+(1/2)arctant
=(1/4)ln|t-1|-(1/4)ln|t+1|+(1/2)arctant+C
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点