底为等边三角形的直棱柱的体积V其表面积最小时,底面边长是?

底为等边三角形的直棱柱的体积V其表面积最小时,底面边长是?

题目
底为等边三角形的直棱柱的体积V其表面积最小时,底面边长是?
答案
设底边边长为a,高为h,则V=√3/4 a^2 *h
h=4√3V/(3a^2),
表面积为S=3ah+√3/2 a^2
=4√3V/a + √3/2 a^2
剩下的可以求导,我用均值不等式做的
=2√3V/a + 2√3V/a+√3/2 a^2>=...
等号成立的条件 2√3V/a =√3/2 a^2 ,a=三次根号下4V
其中等边三角形的面积为√3/4边长的平方
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.